
Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melançon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

Coherent Culling and Shading for
Large Molecular Dynamics Visualization

Sebastian Grottel†, Guido Reina†, Carsten Dachsbacher†, and Thomas Ertl†

Visualization Research Center, University of Stuttgart, Germany (VISUS)

Abstract
Molecular dynamics simulations are a principal tool for studying molecular systems. Such simulations are used
to investigate molecular structure, dynamics, and thermodynamical properties, as well as a replacement for, or
complement to, costly and dangerous experiments. With the increasing availability of computational power the
resulting data sets are becoming increasingly larger, and benchmarks indicate that the interactive visualization on
desktop computers poses a challenge when rendering substantially more than millions of glyphs. Trading visual
quality for rendering performance is a common approach when interactivity has to be guaranteed. In this paper
we address both problems and present a method for high-quality visualization of massive molecular dynamics
data sets. We employ several optimization strategies on different levels of granularity, such as data quantization,
data caching in video memory, and a two-level occlusion culling strategy: coarse culling via hardware occlusion
queries and a vertex-level culling using maximum depth mipmaps. To ensure optimal image quality we employ
GPU raycasting and deferred shading with smooth normal vector generation. We demonstrate that our method
allows us to interactively render data sets containing tens of millions of high-quality glyphs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computer Graphics—
Three-Dimensional Graphics and Realism

1. Introduction

Sciences have come to rely more and more on molecular
dynamics simulations to complement costly and dangerous
real-world experiments. As the cost of computational power
decreases, the size of the simulations challenges interactive
visualization systems on workstation computers. It is com-
mon practice nowadays that glyph-based visualization of
molecular dynamics simulation data applies raycasting tech-
niques implemented on programmable graphics hardware
yielding high rendering quality without costly tessellation.
Older techniques are based on normal and depth maps to
render glyphs [BDST04], but yield lower image quality due
to visible texture filtering artifacts and do not provide bet-
ter performance on contemporary GPUs. Independent of the
underlying rendering technique, such visualization systems
have to deal with several challenges: simulations of interest-
ing scenarios typically require at least hundreds of thousands

† {grottel | reina | dachsbacher | ertl}@visus.uni-stuttgart.de

of particles or molecules, which exceeds the memory of the
graphics hardware. This is relevant especially for mid-range
hardware, which would be fast enough to render several mil-
lions of glyphs, but lacks the required graphics memory to
store them. Time-dependent data sets aggravate this prob-
lem because the amount of data increases by orders of mag-
nitude, and hence data transfer easily becomes a severe bot-
tleneck.

This bandwidth problem has already been analyzed by
us [GRE09]. Our contributions in this context are a frame-
to-frame coherent occlusion culling and caching strategy re-
ducing the overall data transfer to the graphics hardware for
large data sets. Our culling technique makes intensive use of
the occlusion query mechanism of GPUs to determine the
visible parts of the data sets. The key is to carefully budget
these queries as they introduce latencies. Our method ex-
ploits the waiting time and computes a hierarchical depth
buffer for fine-granular culling, effectively hiding these la-
tencies. Actually all current GPUs already provide an im-
plementation of the hierarchical depth buffer [GKM93] that

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

2 S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data

Figure 1: Data set D4 showing a laser ablation simulation
with 48 million atoms. Using our two-level occlusion culling
method, a common workstation can interactively render this
data set with up to 12 FPS (given the whole data set is visible
and no frustum culling is applied).

culls blocks of pixels prior to rasterization, but unfortunately
this mechanism is suspended as soon as any fragment shader
outputs a computed depth value, which is necessary for ray-
casting glyphs. As an alternative, we integrated custom fine-
granular occlusion culling into the vertex processing stage
using a conservative maximum depth mipmap to cull indi-
vidual glyphs prior to raycasting.

When displaying large data sets the image-space foot-
prints of individual glyphs are typically very small and ray-
casting them is prone to aliasing artifacts due to strongly
varying surface normals. Furthermore, raycasting small
glyphs introduces unnecessary overhead and thus they are
often rendered using splats (without normal information).
We propose to tackle these problems by introducing a de-
ferred shading pass that estimates normal vectors in image
space and significantly improves the perception of meso-
level structures.

2. Previous Work

Molecular Dynamics Visualization The visualization of
molecular dynamics data has been approached with vari-
ous substantially different visualization techniques over the
years. The most wide-spread tools are Chimera [Chi], Py-
MOL [Pym], and VMD [VMD]. Generic visualization pack-
ages, such as AVS [AVS] or Amira [Ami] also provide spe-
cial modules for molecular visualization. These tools offer
many analysis features for the specific application domains,
however, their rendering performance does not allow for in-
teractivity when rendering very large data sets, e.g. con-
sisting of more than 50,000 atoms, since most of them use
polygon-based representations without level-of-detail tech-
niques. Recent research addresses these performance prob-
lems: Max [Max04] proposed a splat-based approach for

large molecules, however, the rendering is more similar to
volume splatting than to what researchers in the field of
molecular dynamics are used to. A solution based on depth-
correct textured billboards for sphere, cylinder, and helix
primitives has been presented by Bajaj et al. [BDST04].
These approaches typically achieve lower visual quality
as the limited resolution of the normal and depth textures
causes artifacts. Halm et al. [HOF05] support texture-based,
glyph-based, as well as polygon-based rendering includ-
ing level-of-detail techniques for whole molecule surfaces.
Multi-resolution rendering, see e.g. Nakano et al. [NKV99],
allows the interactive visualization of massive data sets with
more than a million molecules.

Occlusion Culling The data transfer to the GPU easily be-
comes the bottleneck when visualizing large molecular dy-
namics data sets. We [GRE09] analyzed this issue in detail
and concluded that the data transfer is one of the most sig-
nificant bottlenecks. We also found that the performance in-
crease due to quantization beyond single precision is highly
situational, but the memory saving inherent to it is benefi-
cial for large data sets and GPUs with limited memory any-
way. The determination of visible and occluded parts of 3D
scenes in computer graphics, and data sets in visualization, is
of central interest for interactive applications and large input
data. There is an enormous amount of research that has been
conducted in this field. Since covering the entire literature
is beyond the scope of this paper we refer the reader to the
comprehensive overviews by Bittner and Wonka [BW03],
and Cohen-Or et al. [COCSD03].

Our culling method is based on an output-sensitive way
to determine the visibility of parts of the data set. The most
popular mechanism therefor is the hardware occlusion query
supported by current GPUs, which allows the user to de-
termine the number of visible pixels of rasterized geome-
try against the depth buffer. The query result can be read
back to the application after a certain latency which is due
to the processing in the graphics pipeline. Further methods
for determining visibility are widely used, e.g. the hierar-
chical depth buffer [GKM93] and variants such as [Déc05].
Functionality akin to the hierarchical depth buffer is imple-
mented in essentially every GPU, however, it is often deacti-
vated, e.g. if fragment shaders output depth values. The item
buffer method [KS00], extended by Engelhardt and Dachs-
bacher [ED09], assigns a unique color to each object, ras-
terizes the geometry, and then determines its visibility by
counting the pixels with the respective color. These methods
are very efficient for determining the visibility of many ob-
jects at once, however, in our algorithm the associated over-
head does not amortize as the number of queries is compara-
tively small and we explicitly utilize the waiting time for the
hardware occlusion query results.

Recent GPUs also provide support for predicated or con-
ditional rendering [Ope08]: similar to the hardware occlu-
sion query, a query is issued by the application, and after-

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data 3

Figure 2: Data set D1 obtained from a small laser ablation
simulation (107,391 atoms). Although the number of atoms
is small, a brute-force raycasting of the atoms as spheres re-
sults in low performance (27 fps) due to the large number of
depth replacements caused by the highly overlapping glyphs.

wards the GPU is instructed to render the geometry. The
primitives are then automatically excluded from rendering
if no pixel of the query passed the depth test. Note that this
mechanism does not solve the problem of high bandwidth
consumption: since the application is not aware of the result,
the data has to reside on or be transferred onto the GPU in
any case.

Coherent Occlusion Culling Visibility determination in
complex scenes typically involves a large number of occlu-
sion queries and latency often becomes an issue. Different
strategies to reduce this overhead have been investigated.
Guthe et al. [GBK06] model occlusion probability of queries
using statistical means and by this aim to reduce the number
of unnecessary queries. Bittner et al. [BWPP04] and Mat-
tausch et al. [MBW08] use occlusion queries to perform
culling in complex scenes where a bounding volume hierar-
chy is available. In contrast, we can issue all queries for de-
termining visibility (on the coarse level) at the beginning of
each frame before computing the depth mipmap. By this the
latencies have practically no impact on the rendering times.
Coherent occlusion culling is also important for costly point-
based rendering techniques.

Deferred Splatting The deferred splatting
method [GBP04] is closely related to our method and
exploits temporal coherence in a point selection algorithm
for high quality surface splatting. Deferred splatting aims
at executing the costly steps of point splatting for visible
primitives only. For rendering a new frame, the previously
visible point primitives are used to create a possibly incom-
plete depth buffer of the current frame. Next, the points
that are newly visible in this frame are determined using
a cheap point primitive rendering combined with an item
buffer visibility determination. Finally, the depth buffer is
completed using this set of primitives. Analogously the

primitives constituting the visible surfaces, whose color
information is to be splatted into the frame buffer, are
determined.

Deferred Shading Molecular dynamics data sets often
consist of hundreds of thousands of glyphs and the render-
ing is prone to aliasing, which typically stems from strongly
varying normals. Similar problems are known from point-
based rendering and are typically addressed using prefilter-
ing [ZPvBG01] or by accumulating prefiltered input to the
lighting computation [BSK04,HSRG07]. We do not prefilter
normal information, but instead estimate normals on-the-fly
from data in image-space. By this we effectively remove
high-frequency noise and generate a coherent impression of
the large-scale structure of the data sets.

3. Coherent Two-Level Occlusion Culling

In this section we detail the individual steps of our two-
level occlusion culling technique. We use coarse granularity
culling to omit large chunks of data from rendering to re-
duce geometry processing load and bandwidth requirements,
followed by fine-granular culling to omit individual glyphs
from rendering and save fragment processing power.

We first perform coarse frustum and occlusion culling ex-
ploiting temporal coherence. This requires a spatial index
structure to partition the input data into cells of glyphs. We
use a regular grid (for a discussion see Subsection 3.1) and
denote the set of cells containing the glyphs visible in frame
t as Ot (for t = 0 the set Ot contains all cells, since no visi-
bility determination has taken place before). As in previous
work [GRE09] we assume that all glyph data resides in main
memory and is uploaded to the GPU for rendering. In con-
trast to that work, we do not upload all data in a brute-force
manner every frame, but reduce the upload to a minimum.
After these per-cell operations, we cull individual glyphs in
the geometry processing stage prior to rasterization using a
conservative estimate and a maximum depth mipmap. By
this we reduce the costly computation for raycasting in frag-
ment programs.

Our culling technique builds on the following stages ref-
erenced in the following sections and also depicted in Fig. 3:

1. Initialize the depth buffer for occlusion culling rendering
the particles stored in cells Ot−1.

2. Issue occlusion queries for all cells’ bounding boxes of
the spatial data structure.

3. Compute a maximum mipmap from the depth buffer of
step 1 for fine-granular culling.

4.1. Read back the results of the occlusion queries, update Ot ,
and render all visible glyphs with per-glyph culling di-
rectly on the GPU.

4.2. Estimate normals and perform deferred shading in image-
space.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

4 S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data

grid cell
bounding boxes

implicit surface

depth splat

eye

1. init depth buffer 2. start occlusion
queries

3 generate max-
depth mipmap

4.1 collect
occlusion queries

& render cells

4.2 deferred
shading \w normal

estimation

depth map

final render

occluding
glyph

sillhouetts

occluding
points/

fragments

glyph
raycast

point
splatting

max-depth
mip-map

occlusion queries

parameter buffers

Figure 3: The stages of our method: 1. initialization of the depth buffer with known occluders in Ot−1, 2. start of occlusion
queries for all grid cells by testing against the bounding boxes, 3. generation of maximum-depth mipmap, 4.1. collection of
occlusion queries, updating of list Ot of visible cells, and rendering of remaining visible glyphs. Stages 1 and 4.1 can output
raycast glyphs, or points if the glyphs become to small in image-space, 4.2. deferred shading: image-space calculation of
normals and phong lighting. Note that the rendering in stage 1 initializes the depth buffer with a conservative depth splat for
the maximum-depth mipmap, as well as for subsequent render passes.

A pseudo-code description can be found on the web site with
supplemental material†.

We further reduce the overall memory footprint by stor-
ing quantized coordinates in the local coordinate systems
spanned by each cell of the spatial index structure. In addi-
tion to standard short (16-bit integer) representations offered
by the GPU, we also analyze the use of geometry shaders
with respect to arbitrary quantizations for coordinates and
glyph attributes.

3.1. Coarse-Granular Cell-Level Culling

In our implementation we chose a regular grid as spatial data
structure which has the same extents as the bounding box of
the data set and each cell stores all the glyphs it contains.
We opted for a non-hierarchical data structure for various
reasons: first, a hierarchical decomposition of the data would
make a stop-and-wait algorithm necessary [MBW08], which
in turn would require occlusion queries to be interleaved
with the rendering. Second, despite the simplicity and hence
possibly higher number of occlusion queries with a regular
grid, we did not experience detrimental impact on the ren-
dering performance. Self-evidently, we also perform trivial
per-cell frustum culling on the CPU, but omit it from the
following description to focus on the occlusion culling. Our
method exploits frame-to-frame coherency because cells vis-
ible in the previous frame (Ot−1) have a high probability to
be visible in the current frame t as well.

Our methods begins by rendering the particles from the
set Ot−1 for the new frame. Note that grid cells in Ot−1 are

† Web site with supplemental material: http://www.vis.uni-
stuttgart.de/~grottel/eurovis10/

not only potentially visible in frame t, but also contain a sig-
nificant fraction of occluders for other cells and glyphs. The
depth image obtained from this rendering will be used to per-
form the culling on both granularity levels. In this stage, the
raycasting of the glyphs in Ot−1 is simplified by only out-
putting the maximum depth of a glyph instead of computing
exact depths, but with correct glyph silhouettes. This maxi-
mum depth splat is a conservative estimate of the occluding
potential of a glyph. It can be computed once per glyph and
thus a per-pixel depth computation is not necessary and the
early-z culling of the GPU remains active. In order to ben-
efit from early-z culling as much as possible we sort of the
cells from front to back. We retain the order of the cells be-
tween frames. This reduces the sorting cost since the cells
are already almost in order when the camera position does
not move abruptly.

Figure 4: Data set D2 is a molecular dynamics simulation of
a crack propagation in solid media. Due to the crack, inner
cells of the grid can become visible depending on the view
point.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data 5

Figure 5: A sparse data set obtained from a thermodynam-
ics molecular dynamics simulation of a mixture of ethanol
(C2H6O) and heptafluoropropane (C3HF7). In such data
sets there is almost no occlusion, hence our approach can
only reduce small glyphs to points and provide frustum
culling based on the grid structure.

In stage 2 of our method we issue the occlusion queries
against the depth buffer generated in stage 1 for all cells of
the grid to obtain Ot . The results of the queries for previ-
ously invisible cells provide information about cells that be-
come visible and need to be rendered (this adds new grid
cells to Ot). Occlusion queries for cells contained in Ot−1,
i. e. previously visible cells, determine if a grid cell becomes
occluded (and is thus removed from Ot).

The resolution of the spatial grid is a user parameter in
our implementation. On the one hand, more cells yield more
accurate results for cell-level culling. On the other hand, the
more cells we use, the more expensive the cell sorting be-
comes and the more occlusion queries must be issued in-
troducing longer latencies which have to be bridged. For
all data sets we used a 153 grid, which yielded satisfactory
results for all our test data sets. This indicates – for realis-
tic scenarios with a reasonably large viewport resolution –
that stage 3 of our method takes long enough such that the
latency of 153 = 3375 occlusion queries can be effectively
hidden. For the rather elongated data sets (D2, D3, and D4)
there was no difference between using 153 cells compared
to a partitioning that takes the aspect ratios of the data sets’
bounding boxes into account.

In the final stage 4 we read back the results from each
cell’s occlusion query individually. According to the results
we update Ot and render all glyphs (for final display) only
if the cell is visible. Since we use the same cell order for
starting the occlusion queries as for collecting their results
and for rendering the glyphs, the rendering itself adds to the
time budget available for the query results to return.

3.2. Fine-Granular Vertex-Level Culling

As already mentioned, GPUs provide an intrinsic
fine-granular culling through the hierarchical depth
buffer [GKM93], however, this functionality becomes
deactivated in the case of per-pixel raycasting of the glyphs.
In stage 3 we compute a mipmap resolution pyramid of
the depth image from stage 1 to remedy this issue. When
down-sampling, instead of averaging the depth values,
we compute the maximum of a 2 × 2 pixel block, for
conservative occlusion testing.

There is a one-to-one correspondence of glyphs and ver-
tices in our visualization, as one point primitive is rendered
at stage 4.1 for every glyph which is then raycast in the frag-
ment shader. For every glyph we compute its bounding box
in image space and determine the mipmap level where the
area of a texel is just larger than that of the bounding box
size. The glyph’s bounding box then covers four texels at
most (since the vertices cannot be expected to be aligned
with the mipmap) and we take the maximum of their depth
values as a conservative estimate. We can then cull the glyph
if its minimum depth (that can be easily computed) is larger
than this estimate. Since we use a vertex program for these
operations, we “cull” by moving the point primitive to infin-
ity. Obviously this does not reduce the geometry processing
load, but saves costly raycasting operations.

Our approach is primarily suited for dense data sets, as
in the molecular dynamics simulations in the field of mate-
rial science (Fig. 1 shows an example). Obviously, for sparse
data sets (Fig. 5) the room for performance improvement
by culling, other than frustum culling, is small, although the
large number of particles and the limited display resolution
still cause optimizable overdraw.

3.3. Bandwidth Reduction

Determing invisible parts of the data set and omitting them
from rendering at an early stage of the pipeline is one op-
tion to reduce bandwith requirements. Apart from culling,
the two most promising approaches are bandwidth reduction
by quantization and upload avoidance by using GPU-side
caching.

Caching We implemented such a caching mechanism
based on static vertex buffer objects. With the data set sizes
our approach aims at, storing the whole data on a consumer
graphics card is impossible. Since the upload of a vertex
buffer object (VBO) is known to be more costly than di-
rect rendering from vertex arrays [GRE09], we need to en-
sure that once uploaded VBOs are used multiple times. After
the cell-level culling pass we already know which vertices
will be used at least twice per frame, as all potentially vis-
ible glyphs will be processed to initialize the depth buffer
and are rendered as glyphs. Thus the respective data blocks
for these cells are obvious candidates for caching, but the
set of cells is view-dependent, so a complete pre-caching at

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

6 S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data

Figure 6: Comparison between standard and deferred shading (please zoom the electronic version). Left: standard, naïve
raycasting of spheres. Middle: 8×8 super-sampling of raycast spheres. Right: deferred shading with artificial normals.

startup is not expedient. To compensate the upload overhead
of VBOs, we limit the number of VBO uploads to just a
few per frame (currently three has proven to be acceptable).
However, this strategy cannot be used when streaming data
from time-dependent data sets or performing in-situ visual-
ization. In this case, the data is never reusable and we resort
to quantization to compensate the higher upload bandwidth.

Quantization Several quantization strategies for geome-
try and attributes have been presented to date, e.g. hierar-
chical positional quantization [HE03], uniformly distributed
normals [Paj03], or color, geometry, and normal quantiza-
tion for point rendering [RL00]. Since most of the data sets
do not provide glyph attributes, we focused on the quanti-
zation of glyph coordinates. We showed that a quantization
to shorts results in the optimal performance-precision trade-
off [GRE09]. In our approach the quantization is carried out
after a glyph position has been transformed into the local co-
ordinate frame of a grid cell. For reconstruction of the origi-
nal coordinate we pass the origin and extent of a grid cell to
the GPU prior to rendering the glyphs contained therein.

As an alternative, and as a basis for more flexible quan-
tization, we also implemented a de-quantization using both
geometry shaders and instancing with vertex shaders where
a shader program extracts two or more glyphs from a single
compressed representation. As a test case, we chose a 2×12-
bit encoding of two values into the mantissa of one IEEE 754
float to pack the data for two glyphs into one vertex element
in the data stream . This data is either unpacked in the ge-
ometry shader to generate two primitives, or the instances
are assigned the respective portion of the data in the vertex
shader. In case of the geometry shader the required calcula-
tions after unpacking the data, such as the approximation of
the glyph silhouette to estimate the point sizes, are done in
parallel for both glyphs. These unpacking shaders were em-

ployed in the stages 1 and 4.1 of our approach, for glyphs
as well as for points. The performance impact of arbitrary
quantization is discussed in Sect. 4.

3.4. Image-Space Normal Estimation

Since our glyphs are rendered using raycasting, the result-
ing normals are always mathematically accurate. However,
if the image-space size of a glyph becomes small, i.e. if it
covers few fragments only, undersampling of the glyph sur-
face yields aliasing effects, appearing as noise or flickering
(see Fig. 6). Glyphs of the image-space size of a single frag-
ment or below are rendered using a flat color for the same
reason. While the aliasing effect of the former can be less-
ened using expensive super-sampling, the complete lack of
normal vectors for the latter splats requires a different ap-
proach.

To this end, we store the glyph surface information, i.e.
surface normal, color, and position, into an off-screen buffer
(similar to standard deferred shading approaches). To extract
a smoothed surface normal for a pixel we use the nine coor-
dinates – stored at the pixel and at its eight neighbor pixels
– as control points for a quadratic bézier patch. Quadratic
patches are suitable to capture the curvature of the implicit
surfaces of the glyphs. Background fragments and informa-
tion from outside the viewport are replaced by replicating
the data from the currently considered fragment. In Sec-
tion 4 we discuss the quality of the different approaches and
provide links to a comparison video.

However, since we only want to use the estimated nor-
mal for points and small glyphs, we store a fourth param-
eter for every fragment: a confidence rating based on the
image-space size of a glyph that determines how strong the
influence of the raycasting normal is. This value ranges from

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data 7

zero for single-fragment-sized glyphs, to 1 for larger glyphs
(4× 4 fragments or larger in our examples), and is directly
used for obtaining a smooth blending between the artificial
and raycast normal.

4. Results and Discussion

Table 1 shows the data sets used for benchmarking the pro-
posed approaches. D1 (see also Fig. 2) is the smallest among
the data sets and shows one time frame of a molecular dy-
namics simulation of a laser ablation scenario. The data sets
D2 (Fig. 4) and D3 have been obtained from molecular dy-
namics simulations of crack propagation in a solid medium,
whereas D2 just comprises exactly ten percent (in width) of
the whole data set. D4 (Fig. 1) has also been obtained from
a laser ablation simulation, but is considerably more com-
plex than the first example. It is also the largest real-world
data set that was available for benchmarking our system. We
generated an artificial data set, D5, by randomly distribut-
ing 100 million atoms. Significantly larger data sets would
require out-of-core rendering on our test platform which we
wanted to avoid since this would introduce additional per-
formance issues which are not the focus of the work at hand.
Consequently, we loaded the data sets entirely into the main
memory of our test machine which is running Windows 7
with an Intel Xeon 5530 2.4 GHz with a GeForce GTX 285
with 1 GB graphics memory. The rendering is performed us-
ing OpenGL and a viewport size of 10242 pixels.

The rendering performance and culling results of our
method are shown in Table 2 and Figure 7. For each data
set we measured the sphere-only (rows denoted with S-*)
and the point-only (P-*) performance. In real-world scenar-
ios the rendering performance lies in between both values,
because the glyphs are rendered as one of these primitives
depending on their image-space size. For all test scenarios
we measured an increase in rendering performance, the only
exception to this are the two D1 P-* series of benchmarks.
In this case, single fragment points and small data sets, the
performance is reduced due to the overhead introduced by
our method. In addition, this data set is not dense enough
to generate significant occlusion which is underlined by the
percentage of visible cells which is 2 to 5 times higher than

data set number of glyphs description
D1 107,391 small laser ablation
D2 4,456,963 small crack propagation
D3 44,569,630 large crack propagation
D4 48,000,000 large laser ablation
D5 100,000,000 synthetic test data set

Table 1: Sizes and descriptions of the example data sets: D1
- D4 have been created by molecular dynamics simulations,
D5 is an artificial data set and has been created using a
statistical distribution.

0

10

20

30

40

50

60

70

80

S P S P S P S P S P
D1 D2 D3 D4 D5

FPS

no cull. cell cull. vertex cull. both cull. def. shad.

Figure 7: The rendering performance results from Table 2
without any culling (no cull.), cell-level culling only (cell
cull.), vertex-level culling only (vertex cull.), both culling
techniques together (both cull.), and both culling techniques
and the deferred shading pass (def. shad.). Both culling tech-
niques together result in the best performance, while for pure
point representations the share of the vertex-level culling is
negligible. This is due to a change of the limiting bottleneck
from rendering to data transfer. The overhead of the deferred
shading pass is very small. Note that the bars of data set D1
are truncated (see Table 2 for the values) to keep the focus
on the values of the larger and more interesting data sets.

it is when rendering spheres (D1 S-*). Obviously, small data
sets such as D1 defy all optimizations targeted at render-
ing large molecular dynamics simulation data. Furthermore,
D1 and D2 show unexpectedly low frame rates when ren-
dering sphere glyphs (S-*) which is supposedly due to the
large overlap of the primitives resulting in many depth buffer
replacements. This, in turn, also provides significant occlu-
sion, causing large performance improvements when culling
is activated.

Two-level culling We also measured the performance of
the cell-level and vertex-level culling separately. In general,
the cell-level occlusion culling provides higher performance
improvements which is due to the reduction of uploaded
data. The vertex-level culling can only reduce the work-
load of the fragment shaders. For small data sets, such as
D1, the data transfer is not the bottleneck and reducing the
work load of the fragment processing through vertex-level
culling is highly beneficial. For large data sets (D3-D5) the
data transfer is the bottleneck and thus the cell-level culling
has a significant impact on the performance, while the ef-
fect of vertex-level culling alone is negligible. The possible
granularity of the cell-level culling is however limited since
we want the number of grid cells to be low, because of the
front-to-back sorting on the CPU and the number of occlu-
sion queries. On the other hand, the vertex-level culling is

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

8 S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data

data set view con- culling quantization (with two-level culling) deferred shading visible data
figuration none cell vertex both both shorts shorts GS inst. shorts floats cells (%) # glyphs

caching no yes yes yes no no yes no no yes yes
D1 S-Best 28.21 76.06 172.67 90.23 89.61 80.58 91.62 86.62 84.79 84.39 82.30 8.09 3600

S-Worst 32.12 57.25 137.37 68.98 69.88 63.65 68.93 69.67 70.03 66.95 67.45 23.38 3136
P-Best 621.20 99.42 195.34 97.22 104.70 81.02 70.31 75.14 74.62 69.68 104.02 39.38 27713

P-Worst 593.23 99.27 200.96 98.33 101.75 88.05 72.75 74.20 73.76 72.35 97.39 45.75 46338
D2 S-Best 4.60 17.96 7.22 42.60 39.62 37.94 40.52 37.64 39.54 40.53 40.90 6.67 12594

S-Worst 6.92 18.77 12.64 36.30 33.42 30.97 35.87 28.58 29.47 35.47 36.04 20.53 115003
P-Best 14.17 69.90 24.44 69.81 42.84 48.04 72.83 45.24 32.53 67.28 65.75 6.67 44804

P-Worst 15.46 46.78 12.91 73.15 65.27 54.74 68.21 65.56 59.24 66.45 66.70 22.93 261221
D3 S-Best 1.29 7.62 1.22 18.27 15.23 14.51 17.89 15.64 13.65 17.99 17.78 6.67 153786

S-Worst 1.18 3.21 1.06 8.48 6.19 5.81 8.20 6.53 5.62 8.36 8.67 18.70 623188
P-Best 1.70 16.91 1.62 16.61 9.71 9.37 16.79 11.65 7.31 16.79 16.66 6.70 460425

P-Worst 1.56 38.02 1.65 38.52 16.53 15.99 37.15 32.54 17.29 35.70 34.69 18.70 989268
D4 S-Best 0.77 1.94 1.23 5.96 4.28 3.80 5.85 4.92 3.77 5.89 5.94 6.67 160066

S-Worst 0.95 2.33 1.03 7.02 4.44 4.41 6.92 5.72 4.61 7.14 7.23 59.35 654718
P-Best 1.26 12.41 1.93 12.36 6.56 6.77 12.15 10.03 5.19 12.26 12.29 6.67 214358

P-Worst 1.19 15.98 1.36 15.43 9.32 9.05 15.77 11.85 5.89 16.61 15.76 58.90 1144420
D5 S-Best 0.88 8.04 0.73 13.65 9.38 9.18 13.45 10.00 7.92 13.43 13.59 6.67 740977

S-Worst 0.92 2.85 0.55 5.22 3.32 3.42 5.19 3.91 2.80 5.24 5.29 18.70 1313734
P-Best 1.08 20.71 0.90 20.40 11.70 10.93 20.60 16.92 9.04 19.89 19.63 6.67 799347

P-Worst 1.10 8.34 0.88 8.26 4.25 3.46 8.27 6.30 3.31 8.19 8.13 18.70 1521383

Table 2: Performance measurements of our method. All numbers denote frames per second if not otherwise noted. We selected
different views such that glyphs are large enough in screen space and rendered as raycast spheres (S-*), or simple points (P-*).
We also chose viewing directions and distances such that we obtain a best (*-Best) and worst (*-Worst) case for the culling
algorithms (i. e. maximum/minimum number of grid cells occluded). The last two columns show statistics for the case that both
culling levels are active: the percentage of the grid cells that are visible under the respective view configuration (column 14),
and the number of glyphs that are actually raycast after the vertex culling stage (column 15). Column 3 (culling: none) shows
the baseline performance for the unoptimized approach. Columns 6 and 7 demonstrate the impact of caching. The performance
impact of deferred shading and normal estimation can be seen comparing columns 7 and 13 as well as 9 and 12, respectively.

well-suited to further reduce the number of actually rendered
glyphs after coarse culling, especially for massive data sets,
which consequently still contain a high number of densely
packed glyphs in a single cell. The S-* series of measure-
ments for D3 and larger data sets shows that the combina-
tion of both methods is up to one order of magnitude faster
(compared to no culling) in these cases.

Bandwidth reduction Reducing the data upload through
GPU-side caching or quantization further improves the ren-
dering performance. When employing our caching strategy
a speedup of about 40-50% can be observed on average (see
columns 6 and 7 in Table 2). Obviously, caching is most ef-
fective when the view parameters change smoothly, as the
GPU-side cache is updated incrementally. Moreover, the im-
pact of the caching is prominent when the workload of the
fragment processing stage is not the bottleneck of the entire
pipeline. In our tests quantization in general does not show
any positive effect since our cell-level culling and caching
methods reduce the data transfer load beyond relevance for
optimization. As presented in previous work, quantization
to short has only minor precision issues [GRE09] and did
not introduce any visual artifacts in our tests.

If no caching is used, the geometry shader approach im-
proves performance compared to unquantized data, but the
instancing mechanism in OpenGL failed to convince, proba-
bly because of the too small number of instances (only two).
When used together with caching, the rendering speed is
bounded by the rasterization or raycasting stage. However,
for very large data sets a combination of caching and quan-

tization is still useful as quantized data consumes less mem-
ory and thus larger fractions of the data set can reside in local
GPU memory making the system less sensitive to interactive
changes of the viewing direction. In addition, quantization
provides speed-up for sparse data sets where the cell-level
culling is not effective. Our results indicate that our imple-
mentation can use both techniques simultaneously without
any negative mutual implication.

Image-space normals Typically, deferred shading is used
to increase the rendering performance by moving the rather
costly lighting calculations from the raycasting stage, which
is subject to heavy overdraw, into a single image-space pass.
Since our culling strategies almost completely resolve the
overdraw problem, this optimization is actually no longer
achievable, and in principle, the introduction of the addi-
tional image-space rendering pass results in a slight perfor-
mance drop. However, our intention in using deferred shad-
ing was not to increase rendering performance, but image
quality. When raycasting small spheres their normals and
thus the results of per-pixel lighting calculation are subject
to aliasing artifacts (see Section 3.4 and Figure. 6). This
problem even retains when using super-sampling. We gen-
erated this image using a non-interactive rendering at 8× 8
higher resolution, i.e. 81922, followed by a down-sampling
to obtain the resulting image. Although the aliasing noise,
previously appearing as bright speckle highlights all over
the image, is largely removed, there still remain artifacts
(i. e. dark concentric circles on the surface of the block in
Fig. 6, center). Obivously, the rendering performance drops

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data 9

significantly due to the increased image resolution. We mea-
sured a drop to 16% for 16× super-sampling, and a drop
to 4.5% for the previously mentioned 64× super-sampling
for the data sets D2 and D4. In contrast, our deferred shad-
ing stage has only negligible impact on the rendering per-
formance (Table 2, columns 12 and 13) and yields consis-
tent, smooth results. This is possible as we use normals for
the lighting computation obtained from raycasting when-
ever a glyph is large enough, and use normals generated
from the fragment positions stored in the deferred shading
buffers otherwise when glyphs are replaced by point primi-
tives. A smooth transition between both is ensured by blend-
ing the generated normals and the computed normals for
glyphs within a certain size interval. This results in a con-
sistent lighting for the whole dataset. The comparison be-
tween the naïve raycasting, super-sampling, and our image
space method can be seen in Figure 6 and a supplementary
video‡.

Comparison to visualization tools These results demon-
strate that our approach achieves interactive frame rates even
for data sets containing several tens of millions of glyphs.
We tried to compare our approach with freely available vi-
sualization tools. Sadly, none of them was able to load any of
the data sets D3-D5. TexMol [BDST04] failed to display D2
after successfully loading it but achieved a very good frame
rate of about 110 fps for D1. BallView [MHLK05] was able
to load D1 and render it at less than 1 fps. AtomEye [Li03]
performs quite well for D1, but even for D2 the performance
drops to about 0.5 fps. Even when using GLSL for raycast-
ing the glyphs VMD [VMD] renders D1 at 4 fps and requires
more than 20 seconds for a single frame for D2. This is de-
spite the VMD GLSL shader being almost identical to ours
except for several branches, which should be remedied by
on-the-fly shader generation, but to our knowledge this does
not explain the huge difference in performance.

5. Conclusion and Future Work

Our two-level occlusion culling approach allows the interac-
tive visualization of molecular dynamics data sets of the or-
der of 108 glyphs on commodity workstations. The biggest
share of the performance increase is due to the data trans-
fer reduction through coarse occlusion culling on the grid
cell level. Besides the lower bandwidth consumption, this
also removes workload mainly from the geometry process-
ing. The vertex-level culling operates on a finer granularity

‡ A video comparing the image quality of super-sampling
vs. image-space normal estimation (Xvid-compressed AVI;
1280 × 720, or scaled-down 640 × 360) can be found on
the web site with supplemental material: http://www.vis.uni-
stuttgart.de/~grottel/eurovis10/eurovis10-grottel.xvid.avi
http://www.vis.uni-stuttgart.de/~grottel/eurovis10/eurovis10-
grottel.xvid_sml.avi

and considerably reduces the number of raycasting opera-
tions, and thus fragment processing load. Obviously, occlu-
sion culling does not improve the rendering performance for
sparse data sets. Large molecular dynamics data sets are of-
ten dense and especially the combination of both culling lev-
els is beneficial for such cases. Additionally even sparse data
sets with several million particles are subject to overdraw,
since normal workstation displays do not offer enough pix-
els. Caching and quantization yield almost similar render-
ing performance when used alone, but allow for more data
to be cached in GPU memory when used together. However,
caching is only suitable for static data sets, whereas quanti-
zation can be used with dynamic data. Our deferred shading
technique ensures improved shading quality for small glyphs
and points with only negligible impact on the rendering per-
formance.

Anticipating that the data set sizes increase even further
in the future, the capacities of a single workstation are ex-
ceeded and parallel rendering is the only option to provide
interactive visualization. Our occlusion culling method to re-
duce the overdraw is naturally suited for image-space subdi-
vision. However, object-space subdivision might be required
to handle the large amount of data. As future work we there-
fore want to explore hybrid approaches evaluating the vis-
ibility queries in parallel in object-space, while finally ren-
dering the image – after our method has removed occluded
parts of the data – in a distributed manner by an image-space
subdivision. With larger data sets there will be another, pos-
sibly even more severe, bottleneck than the rendering itself:
the data transfer from secondary storage. An object-space
method would allow for a distributed loading, or out-of-core
rendering, of the data sets to remedy this issue.

Acknowledgment

This work is partially funded by Deutsche Forschungsge-
meinschaft (DFG) as part of Collaborative Research Centre
SFB 716.

References
[Ami] Amira. http://www.amiravis.com/. 2

[AVS] AVS. http://www.avs.com. 2

[BDST04] BAJAJ C., DJEU P., SIDDAVANAHALLI V., THANE
A.: Texmol: Interactive visual exploration of large flexible multi-
component molecular complexes. In Proceedings of the confer-
ence on Visualization ’04 (2004), pp. 243–250. 1, 2, 9

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.: Phong splat-
ting. In Proceedings of Symposium on Point-Based Graphics
2004 (2004), pp. 25–32. 3

[BW03] BITTNER J., WONKA P.: Visibility in Computer Graph-
ics. Environment and Planning B: Planning and Design 30, 5
(2003), 729–756. 2

[BWPP04] BITTNER J., WIMMER M., PIRINGER H., PUR-
GATHOFER W.: Coherent Hierarchical Culling: Hardware Oc-
clusion Queries Made Useful. Computer Graphics Forum 23, 3
(2004), 615–624. 3

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

http://www.amiravis.com/
http://www.avs.com

10 S. Grottel & G. Reina & C. Dachsbacher & T. Ertl / Culling and Shading for MD Data

[Chi] UCSF Chimera. http://www.cgl.ucsf.edu/
chimera/. 2

[COCSD03] COHEN-OR D., CHRYSANTHOU Y. L., SILVA
C. T., DURAND F.: A Survey of Visibility for Walkthrough Ap-
plications. IEEE Transactions on Visualization and Computer
Graphics 09, 3 (2003), 412–431. 2

[Déc05] DÉCORET X.: N-Buffers for Efficient Depth Map Query.
Computer Graphics Forum 24, 3 (2005). 2

[ED09] ENGELHARDT T., DACHSBACHER C.: Granular Visibil-
ity Queries. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (2009), pp. 161–167. 2

[GBK06] GUTHE M., BALÁZS A., KLEIN R.: Near Optimal Hi-
erarchical Culling: Performance Driven Use of Hardware Occlu-
sion Queries. In Eurographics Symposium on Rendering 2006
(June 2006), Akenine-Möller T., Heidrich W., (Eds.). 3

[GBP04] GUENNEBAUD G., BARTHE L., PAULIN M.: Deferred
Splatting . Computer Graphics Forum 23, 3 (septembre 2004),
653–660. (EG2004 Proceedings). 3

[GKM93] GREENE N., KASS M., MILLER G.: Hierarchical Z-
Buffer Visibility. In SIGGRAPH ’93 (1993), pp. 231–238. 1, 2,
5

[GRE09] GROTTEL S., REINA G., ERTL T.: Optimized Data
Transfer for Time-dependent, GPU-based Glyphs. In Proceed-
ings of IEEE Pacific Visualization Symposium 2009 (2009),
pp. 65–72. 1, 2, 3, 5, 6, 8

[HE03] HOPF M., ERTL T.: Hierarchical Splatting of Scattered
Data. In Proceedings of IEEE Visualization ’03 (2003), IEEE. 6

[HOF05] HALM A., OFFEN L., FELLNER D.: BioBrowser: A
Framework for Fast Protein Visualization. In Proceedings of EU-
ROGRAPHICS - IEEE VGTC Symposium on Visualization 2005
(2005). 2

[HSRG07] HAN C., SUN B., RAMAMOORTHI R., GRINSPUN
E.: Frequency domain normal map filtering. ACM Transactions
on Graphics 26, 3 (2007), 28. 3

[KS00] KLOSOWSKI J. T., SILVA C. T.: The Prioritized-Layered
Projection Algorithm for Visible Set Estimation. IEEE Transac-
tions on Visualization and Computer Graphics 6, 2 (2000), 108–
123. 2

[Li03] LI J.: Atomeye: an efficient atomistic configuration
viewer. Modelling and Simulation in Materials Science and En-
gineering 11, 2 (2003), 173–177. 9

[Max04] MAX N.: Hierarchical molecular modelling with ellip-
soids. Journal of Molecular Graphics and Modelling 23 (2004).
2

[MBW08] MATTAUSCH O., BITTNER J., WIMMER M.:
CHC++: Coherent Hierarchical Culling Revisited. Computer
Graphics Forum (Proceedings Eurographics 2008) 27, 2 (Apr.
2008), 221–230. 3, 4

[MHLK05] MOLL A., HILDEBRANDT A., LENHOF H.-P.,
KOHLBACHER O.: Ballview: An object-oriented molecular visu-
alization and modeling framework. Journal of Computer-Aided
Molecular Design 19, 11 (2005), 791–800. 9

[NKV99] NAKANO A., KALIA R. K., VASHISHTA P.: Scalable
Molecular-Dynamics, Visualization, and Data-Management Al-
gorithms for Materials Simulations. Computing in Science and
Engineering 1, 5 (1999), 39–47. 2

[Ope08] OPENGL EXTENSION REGISTRY:
NV_conditional_render. http://www.opengl.org/registry/,
2008. 2

[Paj03] PAJAROLA R.: Efficient level-of-details for point based

rendering. In Proceedings IASTED International Conference on
Computer Graphics and Imaging (CGIM) (2003). 6

[Pym] PyMOL. http://pymol.sourceforge.net/. 2

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A multiresolu-
tion point rendering system for large meshes. In Proceedings of
ACM SIGGRAPH 2000 (2000), pp. 343–352. 6

[VMD] Visual Molecular Dynamics. http://www.ks.
uiuc.edu/Research/vmd/. 2, 9

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Surface splatting. In Proceedings of SIGGRAPH 2001
(2001), pp. 371–378. 3

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

http://www.cgl.ucsf.edu/chimera/
http://www.cgl.ucsf.edu/chimera/
http://pymol.sourceforge.net/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/

