
Topological Extraction and Tracking of Defects
in Crystal Structures

Sebastian Grottel1, Carlos A. Dietrich2, João L. D. Comba2, and Thomas Ertl1

1 VISUS - Universität Stuttgart, Germany
2 Instituto de Informática - UFRGS, Brazil

Abstract. Interfaces between materials with different mechanical prop-
erties play an important role in technical applications. Nowadays molec-
ular dynamic simulations are used to observe the behavior of such com-
pound materials at the atomic level. Due to different atom crystal sizes,
dislocations in the atom crystal structure occur once external forces are
applied, and it has been observed that studying the change of these dis-
locations can provide further understanding of macroscopic attributes
like elasticity and plasticity. Standard visualization techniques such as
the rendering of individual atoms work for 2D data or sectional views;
however, visualizing dislocations in 3D using such methods usually fails
due to occlusion and clutter. In this work we propose to extract and
visualize the structure of dislocations, which summarizes the commonly
employed filtered atomistic representations into a concise representation,
similar to the visualizations used with data from dislocation dynamics.
The benefits of our approach are much clearer images still retaining all
relevant data and easier visual tracking of the topological changes of
these structures over time.

1 Introduction

Compound materials are used in several applications, and it is of uttermost im-
portance to understand their properties and how they react under external forces.
An important aspect to consider in this analysis is the appearance of defects in
their atomic structure [1], which have a direct relation to material properties
such as resistance, conductance, strength, etc. For this purpose, Molecular Dy-
namics simulations (MD) are used, which reproduce the behavior of atoms and
molecules for a period of time. Such simulations generate a great number of com-
ponents, which lead to a complex analysis. Often only statistical measurements
are evaluated.

For the analysis of defects, however, the analysis can be restricted to a subset
of this data. Given that the atomic structure of compound materials in normal
conditions correspond to crystal lattice structures, it suffices to consider those
atoms in which their neighborhood deviate from the regularity established by this
lattice. The atoms that have irregular structure align in 1-D and 2-D structures
called dislocations (a 1-D defect) and stacking faults (a 2-D defect).

Fig. 1. Upper row shows full view of a data set, from left to right: original atom data;
after segmentation; extracted defects. Lower row shows zoomed detail view, from left
to right: original atom data; relative neighborhood graph; graph after simplification;
segmented atom data; extracted defects.

The topological structure induced by such defects and their interplay helps
evaluate the material properties. The identification of dislocations and stacking
faults structures from atomistic simulations resemble techniques for skeleton
extraction from discrete data, since only particle positions are given. In this paper
we present an approach that extracts the topological structure of dislocations and
stacking faults from atom positions, and tracks them throughout the simulation.
Our proposal is composed of a segmentation algorithm based on simplification
of a neighborhood graph that allows defects to be identified and tracked over
time. In particular, we identify the formation of junctions among dislocations
and stacking faults. In Figure 1 we show different steps of our algorithm using
a a molecular dynamic simulation of a block of compound material underlying
a stretching force. The two basic materials are Ni and Ni3Al. The data set
originally contains about 1,200,000 atoms. However, because of a first filtering
which will be described in section 3 the files loaded only contain between 13,000
and 87,000 atoms, depending on the scene complexity.

2 Background Material and Related Work

Several papers in the literature of molecular dynamics discuss issues regarding
the evaluation of material properties under external forces, and a good introduc-
tory reference is the book by Bulatov [1]. Since the atomic structure of many
solid materials in normal conditions correspond to crystal lattice structures, de-
fects are observed when changes to the lattice structure occur. Common lattices
include the body-centered cubic (BCC), face-centered cubic (FCC) or hexagonal-

closed packed (HCP). Observing changes to this structure can be done by in-
specting the 12-atom neighborhood of a single atom. In the cases of the FCC
and HCP lattices an atom has six neighbors placed in a hexagonal pattern over
a plane, plus two sets of three points forming a tetrahedral above and below the
atom (see Figure 2). FCC and HCP differ with regard to the orientation of these
tetrahedra (opposed for FCC, same for HCP).

(a) (b)

Fig. 2. FCC (a) and HCP (b) lattices and 12-atom neighborhood of a given atom.

Changes in the regularity, symmetry and ordering of this neighborhood cre-
ate topological defects on the atomic structure [2]. Atoms with irregular neigh-
borhood align in 1-D (dislocations) defects that surround 2-D defects (stacking
faults). Geometric measures give one way to evaluate these defects, such as
the Burgers vector [1] that represents the magnitude and direction of the lattice
distortion of a given dislocation. Several papers discuss how such geometric mea-
sures can be used to track the motion of dislocations. For instance, Schall et al
has a sequence of papers [3,4] that discuss ways to track dislocation in colloidal
crystals, and techniques to visualize the distribution of Burgers vectors (called
Nye tensors). Hartley [5] also discuss a similar approach that measures Nye ten-
sor distributions. Topological analysis of the interplay of dislocations is more
elaborate if done at the atomistic level, and therefore analysis on a meso-scale
representation is often used. Dislocation dynamics is an example of a simulation
running in this meso-scale, and the paper by Lipowsky et al discuss a way to
directly track and visualize dislocation in grain-boundary scars [6].

The work of Bulatov [7–9] suggests tracking topological features of dislo-
cation, such as junctions or multi-junctions(common places of three or more
dislocations). We quote here an important observation made by Bulatov in [8]:
”In large-scale dislocation dynamics simulations, multi-junctions present very
strong, nearly indestructible, obstacles to dislocation motion and furnish new
sources for dislocation multiplication, thereby playing an essential role in the
evolution of dislocation microstructure and strength of deforming crystals sim-
ulations”. Our proposal is based on extracting a skeleton-like structures from
the discrete data given by atomistic simulations, which shows such features like
dislocations and junctions of dislocations.

There is a vast literature on extracting skeleton structures, and a good start-
ing point is the survey presented in [10]. In their paper, skeletonization algo-
rithms are classified in four major classes: thinning and boundary propagation,
distance-field based, geometric methods and general-field functions. Our skele-
tonization algorithm works over discrete point sets and resemble a thinning and
boundary propagation algorithm, although no implicit boundary is formed, but a
neighborhood graph [11,12] that defines atom proximity and allows thinning con-
traction operations. This is also similar to thinning algorithms in distance-field
methods, with respect to the creation of the neighborhood graph, but differ-
ent from these methods since no distance field is used. Geometric methods are
based on proximity structures, such as the Voronoi Diagram, or structures de-
rived from Morse Theory, such as Reeb Graphs or Contour Trees [13–15]. General
field methods such as potential field functions are used in a similar application
described in [16]. In their work, crystal dislocation data is given as a potential
field function, and creates a Morse-Smale complex to evaluate the structure of
dislocations.

Several possibilities for controlling contraction operations can be defined,
and often smoothing procedures are employed [17]. In this work we use a simple
mass-spring contraction based approach, that helps in the creation of a simplified
version of the neighborhood graph (described in Section 3.1).

3 Structure Defects Extraction

The visualization for crystal structure defects in atomistic simulations is similar
to data from dislocation dynamics (DD) simulations. Unlike their data, which has
a clean representation for the structure of the data that allows easy tracking of
individual dislocations over time, in atomistic simulations there is no continuous
or clean description of the dislocations. Therefore, an extraction based on the
atomistic data provided by the molecular dynamic simulations is necessary. This
data consists of an unrelated list of atoms A, each storing its position, an unique
identifier number and a lattice classification based on the nearest neighbors of
the atom accordingly to [18]. This classification is used for a first filtering of the
atom. Atoms of class ca = 0 (with ca being the class of the atom a ∈ A) form
a clean FCC lattice with their nearest neighbors, of class ca = 1 form a HPC
lattice. Atoms of class ca = 2 form neither a FCC nor a HPC lattice but have 12
closest neighbors. Finally, atoms of class ca = 3 do not have 12 neighbors. Since
we are interested in only visualizing the crystal defects, we can completely omit
atoms of class ca = 0 (which are most: more then 90 percent). These atoms are
not written into the data files to keep their sizes small. Switches from FCC to
HPC indicate stacking faults while the other two classes form dislocations (the
classification can be seen in all images showing the original data, e. g. figure 1,
most left images: red atoms are ca = 0, green atoms are ca = 1, and yellow
atoms are ca = 2). Using this lattice classification for identifying crystal defects
is much cheaper then calculating burgers vectors for all atoms.

Fig. 3. Construction of the neighborhood graph (right) from the original atom data
(left). Edges are color-coded: green/blue edges are from E, red/orange edges are from
F , and gray edges are from G.

However, to extract the topological structure, we first need to define neigh-
borhood information between atoms. We create a neighborhood graph using a
cutoff radius automatically chosen, based on the mean distance between two
atoms in the data set as shown in figure 3. For the extraction of the topology we
propose to simplify this graph while keeping relations between graph nodes and
atoms from the original data. We therefore define N to be the list of all nodes in
the graph, where each node n ∈ N stores a set of atom indices ai ∈ n referencing
all atoms which are represented by this node. The initial graph creates one node
for each atom (ni = {ai} with ni ∈ N and ai ∈ A) and places the node on the
position of that atom −→p (ni) = −→p (ai). E, F , and G are the lists of edges in the
graph, where E holds edges connecting two nodes which are initialized with two
atoms a1, a2 with ca1 > 1 ∧ ca2 > 1 (shown in green), G holds edges connecting
a3, a4 with ca3 = 1 ∧ ca4 = 1 (shown in gray), and F holds all remaining edges
of the neighborhood graph (shown in red). Note that the edges in E form dislo-
cations, the edges in G form stacking faults, and the edges in F separate both.
Based on this data structure we perform several simplifications, presented in the
following section.

3.1 Graph Contraction

The first step of the graph simplification a contraction implemented using a
simple mass-spring system. Each node ni manages a speed vector vi, which is
initialized to zero, and a mass, which is modeled by a simple attenuation of vi.
All edges of E and F are considered as springs, where edges e ∈ E try to collapse
to length of zero and edges f ∈ F try to keep their initial length. Edges from G
and all nodes which are connected to at least one edge g ∈ G are not considered
in this calculation step. Also only nodes connected to at least one edge e ∈ E

can be moved. All other nodes are fixed. This way we can ensure that we do not
collapse dislocations cycling around a stacking fault into a single position.

Fig. 4. Left image: the initial neighborhood graph (only edges from E are shown); right
image: graph after the contraction of the mass-spring system (50 Iterations). Note the
unclean, thicker regions near junctions.

In addition to simply moving the nodes in the graph we collapse edges which
get too short. The corresponding threshold is based on the neighborhood ra-
dius used to initially build up the graph (in our examples we used a collapsing
threshold which is half of the neighborhood radius). When collapsing the edge
ei ∈ E we combine all attributes of the two original nodes nei,1 and nei,2 (e. g.
by incorporating all attributes of node nei,2 into nei,1): nei,1 = nei,1

⋃
nei,2,

p(nei,1) = (|nei,1| + |nei,2|)−1(|nei,1|p(nei,1) + |nei,2|p(nei,2)) (and all other at-
tributes accordingly). Edges connected to nei,2 will be changed to point to nei,1

and duplicated edges will be removed. Note that the set of the node nei,1 now
contains more than one atom, but the position of the node p(nei,1) is no longer
directly related to the positions of these atoms. We iterate this procedure until
the graph reaches a stable status, which is measured by the maximum overall
speed of a nodes (usually after 50 to 80 iterations). A result can be seen in
figure 4.

3.2 Graph Simplification

Although the graph resulting from this method visually seems to be very close to
the structure we want to extract, the topology is not as clean as it has to be for
the upcoming task of segmenting the atom data. To perform this segmentation
we need to separate nodes in the graph which represent dislocations from nodes
which represent junctions of dislocations. We propose two different approaches
to classify nodes in the graph to be junctions or not: based on the degree of the
node or based on the positions of the direct neighboring nodes.

The first approach, classification using only the list of edges is trivial, because
all nodes connected to more than two edges can be considered to be junctions.

This clean method is clearly the goal for our final structure. However, the graph
data created by the mass-spring system still contains too complex structures
(unclean and thicker junction regions in figure 4) for this method to work. We
therefore propose for the upcoming simplification tasks a second method.

Fig. 5. Classification of nodes to be junctions or not. Left: edges to the projected
node position p′(ni) are all placed on a line (within a threshold), therefore ni is not
a junction. Right: edges do not form a line (red edge), therefore in this case ni is a
junction.

The idea is to check the directions of the edges connected to the node. When
classifying the node ni, we define Ei to be the set of connected edges Ei =
{ej ∈ E|ni = nej ,1 ∨ ni = nej ,2} and Ni the set of nodes directly connected
by these edges Ni = {nk ∈ N |∃ej ∈ Ei : nk = nej ,1 ∨ nk = nej ,2}\{ni}. To
take a small curvature of the dislocation structures into account (figure 5) we
define a supporting position p′(ni) = (|Ni|)−1

∑
nk∈Ni

p(nk). Given Vi a set of
normalized vectors representing the edges of Ei formed between the position
p(nk) and p′(ni), where nk is the second node connected to the edge apart from
ni. We chose WLOG v1 ∈ Vi to be our reference vector, and we now compute
the dot products between all remaining vectors vj and v1. If all results are 1 or
−1, within a given threshold (we use 0.01), all edges form a linear structure and
thus this node ni is classified not to be a junction.

Using this classification we continue the simplification of the graph by again
employing a mass-spring system, similar to the one presented in section 3.1,
but without considering edges from F . In addition, we double the collapsing
threshold, but only collapse edges between nodes which have been classified
similar using the classification described above. The classification is recalculated
after each iteration. We terminate this phase of our algorithm when the graph
stabilizes (no more edges collapsing).

In addition, we remove edge cycles of length three from the graph when their
overall length is small. Figure 6 shows a simplified situation in which the graph
can reach a stable state, thus preserving such cycles inside one linear structure,
when all edges of this cycle are too large foe the collapsing threshold. We collapse
these cycles into a single node by choosing one node and incorporating the
attributes of the other two into it (similar to collapsing an edge). This heuristic
of removing these cycles yields to very good results.

Fig. 6. Schematic view of a problem-
atic situation. The upper image shows
the relative neighborhood graph. The
mass-spring system contracts the graph
to the lower and stable image. How-
ever, the distance between the atoms
d might be too large, so the edges do
not collapse and the three-edge cycles
become stable.

Fig. 7. Four nodes and edges in the
graph forming a diamond which only
represents a single dislocation. The yel-
low and red atoms are separated by
mistake.

There is also a very rare case where cycles of four edges are formed within
a single dislocation. This happens due to the varying size of the original atom
data, and thus the varying size of the neighborhood graph near this location.
The four edges form a diamond structure connecting two junctions and two non-
junctions, where the two non-junctions only hold very few atoms in their sets
(figure 7). We simply remove this structue by merging the two non-junctions,
although they are not directly connected.

A third heuristic is to remove leaf nodes from the graph. This is valid due to
the nature of dislocations, since these structures always form cycles or complex
graphs, but can never end or emerge within an material. Therefore leaf nodes
are only created by outlier atoms in the input data. We perform these actions
iteratively until the graph stabilizes. After this simplification the graph is small
enough that we can use the easier edge classification based on the degree of the
node, since both methods now create the same results. (See also the discussion
on this heuristics in the conclusion of section 4).

3.3 Atom Data Segmentation

The simplified graph data represents the topology of the original data set and
can therefore be used to segment this data set into the individual dislocations.
To directly use this graph for the segmentations we further simplify its structure,
by collapsing all edges connecting nodes of the same classification (junction or
non-junction). Since we understand junctions as points where dislocation meet
we want them to be ideal points without any size. Therefore we remove all atoms
aj ∈ nj from the sets of junction nodes nj ∈ N , by reassigning these atoms to
the set of the connected non-junction node which contains the atom which is
closest to the atom to be reassigned ni ∈ N with MINai∈ni

|ai − aj |. After this

operation all junction nodes have empty atom sets. However their position is
calculated using the atoms which they contained before reassignment.

After this operation is finished, each edge in the graph connects a junction
node to a non-junction node, and all atoms are assigned to one non-junction
node. To perform the segmentation of the atom data set we can now simply
assign all atoms in the set of each non-junction node the same ID value.

Fig. 8. Left: the graph after all simplification steps; Each edge connects a junction
to a non-junction node. All atoms are associated with non-junction nodes. Right: the
final result; Junctions are represented by cyan spheres, dislocations by blue tubes, and
stacking faults by orange planes.

To generate a clearer representation of the dislocations we fit a tube into each
atoms segment. This is trivial because we kept the positions of junctions nodes,
and they are used to define the start and an end points for the tube, and we
simply interpolate a straight line between them. Whenever the distance of atoms
to the line gets too big, we split the line in two and continue recursively with
both line segments. This way we not only find a simple line through the segment,
but we also calculate a radius for a tube, by defining a plane perpendicular to a
line segment going through the midpoint of that line segment and projecting all
atoms near onto this plane. By fitting a circle into these points we get a useful
radius.

Our final results (figure 8) also show spheres as representatives of the junc-
tions. These are simply placed at the positions of the junctions nodes and use a
radius depending on the maximum radius of the line segments connected to this
junction.

3.4 Stacking Fault Extraction

After we extracted the dislocation structures and created a concise representa-
tion using tubes, we can now focus on creating a similar visualization on the

stacking faults. Stacking faults are always aligned to a crystal plane, so it is
sufficient to perform a segmentation on the atom sets and then fitting a single
polygon into the data. Furthermore stacking faults are always bordered by dislo-
cations, because they also cannot emerge or disappear within a normal crystal.
We propose only to determine the existence of a stacking fault and to find their
surrounding dislocations. Since we already extracted the dislocations as tubes,
we can simply connect their lines with a polygon.

Fig. 9. Shows a problematic situation for the stacking fault segmentation using region
growing, from left to right: The original data set; In the relative neighborhood graph
atoms from different stacking fault segments are connected; the final segmentation.

The main idea of segmenting the atom data for the stacking faults is to per-
form a region growing on the neighborhood graph using edges gi ∈ G. However,
the data we used have crystal planes meeting under sharp angles (60 degree),
which results in neighboring stacking faults meeting at one dislocation and being
connected in the graph (figure 9). Simply ignoring edges from F is not possible,
since some stacking faults are only one atom layer thin and therefore do not have
edges from G. To fix this, we define a border region of atoms NB as set of all
atoms connected by at least one edge gi ∈ G and at least on edge ej ∈ E

⋃
F .

We define NG to be the set of atoms only connected to edges gi ∈ G, and chose
an atom from NG as seeding point for a region growing by assigning a new
segment ID, repeating this until all atoms from NG are segmented. However,
it might happen that atoms from NB will not be assigned to any segment. To
assign atoms of NB to a segment we look at all neighbor atoms of NB which are
ai ∈ NB

⋃
NG and have already a segment ID. We save the segment ID which

is assigned to most neighbors for the atom we want to segment, but we assign
these IDs all at the same time at the end of an iteration step. Since the border
area is equally thick (one atom) with this approach all segments grow with the
same speed (one atom per iteration), we will get clean results in the problematic
scenarios described above.

As second step we collapse all edges gi ∈ G which connect nodes with the
same segment ID by merging there atom sets, similar to the approach of the
dislocation extraction. Eedges fi ∈ F are used to determine correspondences
between the stacking fault segments and the dislocation segments. We sort the

list of dislocation segments based on the junctions nodes they use to form a cycle
surrounding the stacking fault. We then simply span a polygon inside this cycle
to represent the stacking fault (e. g. figures 8 and 11). Rendering these polygons
using transparency also lessens the occlusion problem compared to the original
atomistic representation.

3.5 Segment Tracking

The last remaining feature of our visualization is the tracking of the extracted
features (dislocations and stacking faults) over time. Although we handle dislo-
cations and stacking faults independently in this tracking process, we apply the
same method to both data structures. Because of this we will not differentiate
between these. We perform the segmentation of the atom data independently
for each time step. The tracking is done by relabeling the extracted segments
with IDs from the last time step. We compute the overlap of the atom sets of
the nodes of the neighborhood graph which represent the segments in one time
step with the sets from the previous time step and pair those segments with the
largest overlap. We order the segments by their size decreasingly and start with
the largest segment performing this action. Due to our graph simplification, our
results are a bit unsteady at the junction regions, but the tracking shows that
even in these regions the main segments are quite stable (see the attached video
material).

4 Results and Future Work

We presented an approach for generating simplified representations molecular
dynamics data sets containing crystal structure defects, especially dislocations
and stacking faults. We thereby create a connection between visualizations of
atomistic data and data from dislocation dynamics. The proposed feature ex-
traction and tracking is performed in a preprocessing step. On a common desk-
top computer (Intel Core2Duo 6600@2.40 GHz, 2 GB RAM, NVidia GeForce
7900 GT) these calculations take an average time of about 20 seconds per time
step (depending on the complexity of the contained structure) for the Ni-Ni3Al
data set mainly used in this paper. These preprocessing results can then be vi-
sualized and explored interactively on the same machine. The rendering of the
atoms is done using point-sprites, so we have no problems interactively rendering
(more then 10 FPS) up to millions of atoms. However, we only have this large
number of atoms in artificial test data sets. The real world data sets we worked
with contained between 13,000 and 87,000 atoms, and can be rendered with far
more then 60 FPS. The extracted structure is stored as triangle mesh and up-
loaded using vertex arrays. Our data sets resulted in meshes containing between
28,000 and 93,000 triangles. Interactive exploration of the time-dependent data
set can be done employing an out-of-core streaming approach.

In addition to the Ni-Ni3Al data set mainly used in this paper and used for the
video supplied with this paper, we tested our approach with several other data

(a) Data set 2 containing two layers (upper one Ni3Al; lower one Ni) pulled
apart.

(b) Data set 3 containing only Ni3Al pulled in one direction.

(c) Data set 4 containing Ni atoms pulled in one direction.

Fig. 10. Three datasets visualized with our method. All show the original data set with
the lattice classification (left) and the results of the atom data segmentation (right;
center in figure 10(c)). Right image in figure 10(c) shows the results of the structure
extraction.

Fig. 11. Extracted crystal defects of time steps 10, 250, 350, 400, 500 and 595.

sets, all from molecular dynamic simulations and all containing crystal structure
defects (Figure 10). Figure 10(a) shows a simulation of a probe consisting of
one layer Ni3Al and one layer Ni. The two layers are pulled apart. Although the
feature extraction cannot be performed because of the lower layer has a BCC
lattice and we don’t have a suitable neighborhood classification for atoms in this
lattice (see discussion below), the results of the segmentation (right image) are
very good for the FCC lattice. The other two of these data sets are simulations
of clean materials (Ni3Al in figure 10(b) and Ni in figure 10(c) pulled in one
direction. The segmentation of the atoms is good in both cases. In the Ni3Al data
set the stacking faults group together in big blocks, thus making our approach
of using single polygons unapplicable. Nevertheless, the segmentation allows a
clearer view of the crystal planes in complex regions of the material. The Ni data
set shown in figure 10(c) also works with our feature extraction (right image).
However, our current implementation is missing some of the features due to some
problems with tracking the atom segments over the periodic boundary conditions
(Note for reviewers: we are positive to fix this problem for the final version).

Figure 11 shows the crystal structure evolution in the Ni-Ni3Al data set by
showing six relevant time steps. The data sets does not change significantly until
about time step 300. Then dislocations start to split up and large area of stacking
faults start to form (e. g. in the upper right area) and dislocations also start to
change their form and position (e. g. in the lower left area, in front). The semi
transparent rendering of the stacking faults not only makes the occlusion less

problematic, it also allows to identify the crystal planes more easily on which
they occur.

Our approach still has some problems. Especially the heuristics applied to
simplify the neighborhood graph are not very robust. Although they work very
well on all data sets we used, and although they are based on knowledge from the
application domain, we want to enhance their quality by taking the coherence
between different time steps of the data set into account. First basic tests are
encouraging. The information we get by tracking the cluster segments could be
used for further cleaning the results and additionally the results of the atom
data segmentation could be used in the next time step as starting condition.

Another problem already mentioned earlier is that our approach currently
only works for FCC crystals, because we relay on the atom neighborhood classifi-
cation in the input data for identifying atoms forming dislocations and junctions
(as described in [18]). We want to extend our approach based on a similar clas-
sification to BCC crystals, however, it is not clear at the moment how such an
classification can be made.

According to the feedback we got from the domain experts we were working
with, the clear representation of the crystal planes is really beneficial, as well
as the tracking of the dislocation. There is no currently available visualization
tool which is capable of handling atomistic data sets from molecular dynamic
simulations in the described manner. For future work we want to optimize our
approach, eliminate all problems described above, and integrate our visualization
in a framework allowing better user interaction, making our tool more usable for
the domain experts.

References

1. Bulatov, V., Cai, W.: Computer Simulation of Dislocations. Oxford University
Press, USA (2006)

2. Sethna, J.P.: Statistical Mechanics: Entropy, Order Parameters and Complexity.
Oxford University Press (2006)

3. Schall, P., Cohen, I., Weitz, D.A., Spaepen, F.: Visualization of dislocation dy-
namics in colloidal crystals. Science 24 (2004) 1944–1948

4. Schall, P., Cohen, I., Weitz, D.A., Spaepen, F.: Visualizing dislocation nucleation
by indenting colloidal crystals. Nature 440 (2006) 319–323

5. Hartley, C., Mishin, Y.: Characterization and visualization of the lattice misfit
associated with dislocation cores. Acta Materialia 53 (2005) 1313–1321

6. Lipowsky, P., Bowick, M.J., Meinke, J.H., Nelson, D.R., Bausch, A.R.: Direct
visualization of dislocation dynamics in grain-boundary scars. Nature Materials 4
(2005) 407–411

7. Bulatov, V., Cai, W., Fier, J., Hiratani, M., Hommes, G., Pierce, T., Tang, M.,
Rhee, M., Yates, K., Arsenlis, T.: Scalable line dynamics in paradis. In: SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing, Washington,
DC, USA, IEEE Computer Society (2004) 19

8. Bulatov, V.V., Hsiung, L.L., Tang, M., Arsenlis, A., Bartelt, M.C., Cai, W., Flo-
rando, J.N., Hiratani, M., Rhee1, M., Hommes, G., Pierce, T.G., de la Rubia, T.D.:
Dislocation multi-junctions and strain hardening. Nature 440 (2006) 1174–1178

9. Bulatov, V., Abraham, F.F., Kubin, L., Devincre, B., Yip, S.: Connecting atomistic
and mesoscale simulations of crystal plasticity. Nature 391 (1998) 669–672

10. Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms.
IEEE Transactions on Visualization and Computer Graphics 13(3) (2007) 530–
548 Member-Deborah Silver.

11. Supowit, K.J.: The relative neighborhood graph, with an application to minimum
spanning trees. J. ACM 30(3) (1983) 428–448

12. Agarwal, P.K., Mataušek, J.: Relative neighborhood graphs in three dimensions.
In: SODA ’92: Proceedings of the third annual ACM-SIAM symposium on Discrete
algorithms, Philadelphia, PA, USA, Society for Industrial and Applied Mathemat-
ics (1992) 58–65

13. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.T., Hamann, B.: A topological
approach to simplification of three-dimensional scalar functions. IEEE Transac-
tions on Visualization and Computer Graphics 12(4) (2006) 474–484

14. Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V.: Time-varying reeb
graphs for continuous space-time data. In: SCG ’04: Proceedings of the twentieth
annual symposium on Computational geometry, New York, NY, USA, ACM (2004)
366–372

15. Carr, H.: Efficient generation of 3-d contour trees. Master’s thesis, University of
British Columbia (2000)

16. Natarajan, V., Edelsbrunner, P.H., Arge, P.L., Harer, P.J., Sun, P.X., Natarajan,
V., Edelsbrunner, P.H., Arge, P.L., Harer, P.J., Sun, P.X.: by (2004)

17. Au, O.K.C., Tai, C.L., Chu, H.K., Cohen-Or, D., Lee, T.Y.: Skeleton extraction
by mesh contraction. ACM Trans. Graph. 27(3) (2008) 1–10

18. Honeycutt, J.D., Andersen, H.C.: Molecular dynamics study of melting and freez-
ing of small lennard-jones clusters. Journal of Physical Chemistry 91(19) (1987)
4950–4963

